Class Exercise 3 Solution

1. Let D be the region bounded between $y=6-x^{2}, y=2$, and $y=0$. Express the double integral of some f over D in $d x d y, d y d x$ and in polar coordinates.
Solution. The parabola $y=6-x^{2}$ cuts the horizontal line $y=2$ at $(2,2)$ and $(-2,2)$. It cuts the horizontal line $y=0$ at $(0, \sqrt{6})$ and $(0, \sqrt{6})$. A ray from the origin cuts the parabola for $\theta \in[0, \pi / 4]$ and $[3 \pi / 4, \pi]$. It cuts the line $y=2$ for $\theta \in[\pi / 4,3 \pi / 4]$. We have

$$
\iint_{D} f(x, y) d A=\int_{0}^{2} \int_{-\sqrt{6-y}}^{\sqrt{6-y}} f(x, y) d x d y
$$

Finally, in polar coordinates,

$$
\begin{aligned}
\iint_{D} f(x, y) d A= & \int_{0}^{\pi / 4} \int_{0}^{r(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta+\int_{\pi / 4}^{3 \pi / 4} \int_{0}^{2 / \sin \theta} f(r \cos \theta, r \sin \theta) r d r d \theta \\
& +\int_{3 \pi / 4}^{\pi} \int_{0}^{r(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{aligned}
$$

where $r(\theta)$ is the polar equation of $y=6-x^{2}$, that is,

$$
r(\theta)=\frac{-\sin \theta+\sqrt{\sin ^{2} \theta+24 \cos ^{2} \theta}}{2 \cos ^{2} \theta} .
$$

BTW, we also have

$$
\iint_{D} f(x, y) d A=\int_{-\sqrt{6}}^{-2} \int_{0}^{6-x^{2}} f(x, y) d y d x+\int_{-2}^{2} \int_{0}^{2} f(x, y) d y d x+\int_{2}^{\sqrt{6}} \int_{0}^{6-x^{2}} f(x, y) d y d x
$$

2. Find the area of one leaf of $r=12 \cos 3 \theta$. Can you express this curve in cartesian coordinates?

Solution. This rose has three leaves, one of which lies over $\theta \in[-\pi / 6, \pi / 6]$. The area is given by

$$
\int_{-\pi / 6}^{\pi / 6} \int_{0}^{12 \cos 3 \theta} r d r d \theta=72 \int_{-\pi / 6}^{\pi / 6} \cos ^{2} 3 \theta d \theta=12 \pi
$$

Using $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$, the curve $r=12 \cos 3 \theta$ becomes

$$
r=12\left(\frac{4 x^{3}}{r^{3}}-3 \frac{x}{r}\right)
$$

which is simplified to

$$
\left(x^{2}+y^{2}\right)^{2}=48 x^{3}-36 x\left(x^{2}+y^{2}\right)=12 x^{3}-36 x y^{2} .
$$

